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Abstract In this paper, a sequence of approximate solution converging uniformly
to the exact solution for a class of integro-differential equation with an integral bound-
ary condition arising in chemical engineering, underground water flow and population
dynamics and other field of physics and mathematical chemistry is obtained by using
an iterative method. Its exact solution is represented in the form of series in the repro-
ducing kernel space. The n-term approximation un(x) is proved to converge to the
exact solution u(x). Moreover, the first derivative of un(x) is also convergent to the
first derivative of u(x).
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1 Introduction

We consider the integro-differential equation with an integral boundary condition

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v′(x) = f (x, v(x),
1∫

0
k(s)v(s)ds), 0 ≤ x ≤ 1,

v(0) = λv(1)+
1∫

0
D(s)v(s)ds + d, d ∈ R,

(1.1)

where f ∈ C([0, 1] × R
2,R), k, D ∈ C([0, 1],R) and λ ∈ R.
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It is well known that non-local conditions came up when the values of function
on the boundary were connected to the values inside the domain. They arises in a
variety of different scientific fields such as chemical engineering, underground water
flow and population dynamics and other field of physics and mathematical chemistry.
There were extensive literatures on non-local problems and the boundary value prob-
lems (BVPs) involving integral boundary conditions had been received considerable
attention. A lot of methods were applied to solve the problems such as functional
method, energy method, Galerkin method and discretization method. For BVPs with
integral boundary conditions and comments on their importance, we refer the reader
to the papers by Gallardo [1], Karakostas and Tsamatos [2], Lomtatidze and Malag-
uti [3] and the references therein. In [4], the authors used the method of lower and
upper solutions combined with monotone iterative techniques successfully for prob-
lems (1.1). However, the literature of numerical analysis contains little on the solution
of (1.1).

So far, many classical problems such as population models and complex dynam-
ics had been solved in reproducing kernel space [5,6]. In [7–11], many two-point
BVPs were solved in reproducing kernel space which satisfied two-point boundary
conditions.

In this paper, a class of integral boundary problems which satisfy integral bound-
ary conditions in reproducing kernel space W2[0, 1] had been solved. A sequence of
approximate solution converging uniformly to the exact solution of integro-differen-
tial equation with an integral boundary condition was obtained by using an iterative
method.

In order to put boundary conditions of (1.1) into W2[0, 1] constructed in the fol-
lowing sections, we must homogenize these conditions. Through transformation of
function, (1.1) can be converted into the equivalent form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(x) = F(x, u(x),
1∫

0
h(s)u(s))ds, 0 ≤ x ≤ 1,

u(0) = λu(1)+
1∫

0
H(x)u(x)dx,

(1.2)

where F ∈ C([0, 1] × R
2,R), h, H ∈ C([0, 1],R) and λ ∈ R.

We give the representation of exact solution and approximate solution of (1.2) in
W2[0, 1]. The advantages of this method are as follows: first, the conditions for deter-
mining solution in (1.2) can be imposed on W2[0, 1] and therefore the reproducing
kernel satisfying the conditions for determining solution can be calculated. We will
use the kernel to solve problems. Second, the iterative sequence un(x) converges to
the solution u(x) in C1.

The paper is organized as follows. In Sect. 2, some definitions of the reproduc-
ing kernel space and a linear operator were introduced. Section 3 provide the main
results. An iterative sequence is developed for the kind of problems in W2[0, 1]. Four
numerical experiments shown that our methods is efficient in Sect. 4. Section 5 is the
conclusions.
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2 Preliminaries

In the section, some reproducing kernel spaces are introduced for solving the solution
of (1.2).

2.1 The reproducing kernel space W2[0, 1]

The inner product space W2[0, 1] (see [12]) is defined by

W2[0, 1] =
{

u(x)|u′(x) is a absolutely continuous real valued function,

u′′(x) ∈ L2[0, 1], u(0) = λu(1)+
1∫

0

H(x)u(x)dx

}

.

The inner product and norm are defined respectively by

〈u(x), v(x)〉W2 =
1∑

i=0

u(i)(0)v(i)(0)+
1∫

0

u′′(x)v′′(x) dx, (2.1)

‖u‖W2 = √〈u, u〉W2 , (2.2)

where u, v ∈ W2[0, 1].

Theorem 2.1 Space W2[0, 1] is a complete reproducing kernel space. That is, for each
fixed x ∈ [0, 1], there exists K2(y, x) ∈ W2[0, 1], such that 〈u(y), K2(y, x)〉W2 =
u(x) for any u(y) ∈ W2[0, 1] and y ∈ [0, 1]. The reproducing kernel K2(y, x) can be
written as

K2(y, x) =

⎧
⎪⎪⎨

⎪⎪⎩

4∑

i=1
ai (x)yi−1 + c1(x)H1(y), y ≤ x,

4∑

i=1
bi (x)yi−1 + c1(x)H1(y), y > x,

(2.3)

where H1(y) = ∫ y
0

∫ y
0

∫ y
0

∫ y
0 H(y)dydydydy.

Proof (i) The proof of the completeness and reproducing property of W2[0, 1] is
similar to the proof of Theorem 1.3.1 in [12].

(ii) Now, let’s find out the expression of the reproducing kernel function K2(y, x)
in W2[0, 1].
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Through several integration by parts for (2.1), we have

〈u(y), K2(y, x)〉W2 =
1∑

i=0

u(i)(0)[∂ i
y K2(0, x)− (−1)1−i∂3−i

y K2(0, x)]

+
1∑

i=0

(−1)1−i u(i)(1)∂3−i
y K2(1, x)

+
1∫

0

u(y)∂4
y K2(y, x) dy.

Since u(x) ∈ W2[0, 1], it follows that u(0) = λu(1)+ ∫ 1
0 H(x)u(x)dx , then

〈u(y), K2(y, x)〉W2 = u(0)[K2(0, x)+ ∂3
y K2(0, x)]

+ u′(0)[∂1
y K2(0, x)− ∂2

y K2(0, x)]
+ u′(1)∂2

y K2(1, x)− u(1)∂3
y K2(1, x)

+
1∫

0

u(y)∂4
y K2(y, x) dy

+ c1(x)[u(0)− λu(1)−
1∫

0

H(y)u(y)dy]

= u(0)[K2(0, x)+ ∂3
y K2(0, x)+ c1(x)] + u′(0)[∂1

y K2(0, x)

− ∂2
y K2(0, x)] + u′(1)∂2

y K2(1, x)

− u(1)[∂3
y K2(1, x)+ c1(x)λ]

+
1∫

0

u(y)[∂4
y K2(y, x)− c1(x)H(y)]dy (2.4)

Note that the property of the reproducing kernel 〈u(y), K2(y, x)〉W2 = u(x), K2(y, x)
is the solution of the following generalized differential equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂4
y K2(y, x)− c1(x)H(y) = δ(y − x),

K2(0, x)+ ∂3
y K2(0, x)+ c1(x) = 0,

∂1
y K2(0, x)− ∂2

y K2(0, x) = 0,
∂2

y K2(1, x) = 0,
∂3

y K2(1, x)+ c1(x)λ = 0.

(2.5)

While y �= x , it is easy to know that K2(y, x) is the solution of the following
constant linear homogeneous differential equation with four-order, i.e.
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∂4
y K2(y, x)− c1(x)H(y) = 0, (2.6)

with the boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K2(0, x)+ ∂3
y K2(0, x)+ c1(x) = 0,

∂1
y K2(0, x)− ∂2

y K2(0, x) = 0,

∂2
y K2(1, x) = 0,

∂3
y K2(1, x)+ c1(x)λ = 0.

(2.7)

We know that Eq. (2.7) has the characteristic equation λ4 = 0 and the eigenvalue
λ = 0 is a root whose multiplicity is four. Therefore, the general solution of (2.7) is
kernel function K2(y, x). It can be written by (2.3).

Now we are ready to calculate the coefficient ai (x), bi (x)(i = 1, 2, . . . , 4) and
c1(x) in (2.3).

Since ∂4
y K2(y, x)− c1 H(y) = δ(y − x), we have

∂k
y K2(x + 0, x) = ∂k

y K2(x − 0, x), k = 0, 1, 2, (2.8)

and

∂3
y K2(x + 0, x)− ∂3

y K2(x − 0, x) = 1. (2.9)

Note that K2(y, x) ∈ W2[0, 1], it follows that

K2(0, x) = λK2(1, x)+
1∫

0

H(y)K2(y, x)dy (2.10)

From (2.7) and (2.8)–(2.10), the unknown coefficient of (2.3) can be obtained. �	

2.2 The reproducing kernel space W1[0, 1]

The inner product space W1[0, 1] (see [13]) is defined by

W1[0, 1] = {u(x) | u is a absolutely continuous real valued function, u′ ∈ L2[0, 1]}

The inner product and norm are given respectively by

〈u(x), v(x)〉W1 = u(0)v(0)+
1∫

0

u′(x)v′(x)dx, (2.11)

‖u‖W1 = √〈u, u〉W1 , (2.12)

where u(x), v(x) ∈ W1[0, 1].

123



J Math Chem (2010) 47:1054–1067 1059

In [13], it has been proved that W1[0, 1] is also a complete reproducing kernel space
and its reproducing kernel is

K1(y, x) =
{

1 + y, y ≤ x,
1 + x, y > x .

2.3 Introduction into a linear operator L

Let Lu = u′, L : W2[0, 1] → W1[0, 1], then (1.2) can be converted into the form as
follows

⎧
⎨

⎩

Lu = G(x, u(x), u(s)), 0 ≤ x ≤ 1,

u(0) = λu(1)+
1∫

0
H(x)u(x)dx,

(2.13)

where G(x, u(x), u(s)) = F(x, u(x),
∫ 1

0 h(s)u(s)ds) ∈ W2[0, 1] and G(x, y, z) ∈
W1[0, 1] as x ∈ [0, 1], y(x), z(x) ∈ W2[0, 1]. It is easy to prove that L is a bounded
linear operator.

Now, we construct an orthogonal function system.
Let ϕi (x) = K1(x, xi ), ψi (x) = L

∗ϕi (x), where L
∗ is the conjugate operator of

L. In terms of the properties of K1(y, x), one obtains

〈u(x), ψi (x)〉W2 = 〈Lu(x), ϕi (x)〉W1 = Lu(xi ), i = 1, 2, . . . .

We collect two lemmas in [14] for future use.

Lemma 2.1 If {xi }∞i=1 is dense on [0, 1], then {ψi (x)}∞i=1 is a complete system of
W2[0, 1] and ψi (x) = Ly K2(y, x)|y=xi . The subscript y by the operator L indicates
that the operator L applies to the function of y.

Lemma 2.2 If u(x) ∈ W2[0, 1], then there exists M1 > 0, such that ‖u‖C1[0,1] ≤
M1‖u‖W2 , where ‖u‖C1[0,1] = max

x∈[0,1] |u(x)| + max
x∈[0,1] |u

′(x)|.

The orthonormal system {ψ i (x)}∞i=1 of W2[0, 1] can be derived from Gram-Schmidt
orthogonalization process of {ψi (x)}∞i=1,

ψ i (x) =
i∑

k=1

βikψk(x), (2.14)

where βik are orthogonalization coefficients.
Hence ∀u(x) ∈ W2[0, 1], u(x) can be expanded in terms of Fourier series about

normal orthogonal system

u(x) =
∞∑

i=1

〈u(x), ψ i (x)〉W2ψ i (x). (2.15)
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3 An iterative method for the approximate solution of (2.13)

Theorem 3.1 If {xi }∞i=1 is dense on [0, 1] and u(x) ∈ W2[0, 1] is the solution of
(2.13), then u(x) satisfies the form

u(x) =
∞∑

i=1

i∑

k=1

βik G(xk, u(xk), u(s))ψ̄i (x), (3.1)

Proof Since u(x) ∈ W2[0, 1], due to W2[0, 1] is the Hilbert space, the series
∞∑

i=1
〈u(x),

ψ i (x)〉W2ψ i (x) is convergent in the norm of ‖ · ‖W2 . Note that 〈v(x),
ϕi (x)〉W1 = v(xi ) for each v(x) ∈ W1[0, 1].

By Lemma 2.1, (2.14) and (2.15) one obtain

u(x) =
∞∑

i=1

〈u(x), ψ̄i (x)〉W2ψ̄i (x)

=
∞∑

i=1

i∑

k=1

βik〈u(x), ψk(x)〉W2ψ̄i (x)

=
∞∑

i=1

i∑

k=1

βik〈u(x),L∗ϕk(x)〉W2ψ̄i (x)

=
∞∑

i=1

i∑

k=1

βik〈Lu(x), ϕk(x)〉W1ψ̄i (x).

If u(x) ∈ W2[0, 1] is the exact solution of (2.13), then Lu = G(x, u(x), u(s)),
hence we have

u(x) =
∞∑

i=1

i∑

k=1

βik〈G(x, u(x), u(s)), ϕk(x)〉W1ψ̄i (x)

=
∞∑

i=1

i∑

k=1

βik G(xk, u(xk), u(s))ψ̄i (x).

�	
Remark Case (i): If (2.13) is linear, that is, G(x, u(x), u(s)) = G(x), then the

analytical solution of (2.13) can be obtained directly by (3.1).
Case (ii): If (2.13) is nonlinear, that is, G(x, u(x), u(s)) depends on u, then the
solution of (2.13) can be obtained by the following iterative method.
We construct an iterative sequence un(x), putting

⎧
⎨

⎩

any fixed u0(x) ∈ W2[0, 1],
un(x) =

n∑

i=1
Ai ψ̄i (x),

(3.2)
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where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A1 = β11G(x1, u0(x1), u0(s)),

A2 =
2∑

k=1
β2k G(xk, uk−1(xk), uk−1(s)),

· · ·
An =

n∑

k=1
βnk G(xk, uk−1(xk), uk−1(s)).

(3.3)

Next, we proof un(x) in iterative formula (3.2) is convergent to the exact solution
of (2.13).

Theorem 3.2 Suppose the following conditions are satisfied: (i)‖un‖W2 is bounded;
(ii) {xi }∞i=1is dense in [0, 1]; (iii) G(x, y(x), z(x)) ∈ W1[0, 1] for any y(x), z(x) ∈
W2[0, 1]. Then un(x) in iterative formula (3.2) converges to the exact solution u(x)
of (2.13) in W2[0, 1] and

u(x) =
∞∑

i=1

Ai ψ̄i ,

where Ai are given by (3.3).

Proof (i) First, we will prove the convergence of un(x).
By (3.2), we have

un+1(x) = un(x)+ An+1ψ̄n+1(x), (3.4)

then the orthonormality of {ψ̄(x)}∞i=1 yields

‖un+1‖2
W2

= ‖un‖2
W2

+ (An+1)
2 = · · · =

n+1∑

i=1

(Ai )
2. (3.5)

From boundedness of ‖un‖W3 , we have
∞∑

i=1
(Ai )

2 < ∞, i.e. {Ai } ∈ l2(i =
1, 2, · · · ).
Let m > n, in view of (um − um−1) ⊥ (um−1 − um−2) ⊥ · · · ⊥ (un+1 − un),
it follows that

‖um − un‖2
W3

= ‖um − um−1 + um−1 − um−2 + · · · + un+1 − un‖2
W3

= ‖um − um−1‖2
W3

+ · · · + ‖un+1 − un‖2
W3

=
m∑

i=n+1

(Ai )
2 → 0, (m, n → ∞). (3.6)

Considering the completeness of W2[0, 1], there exists u(x) ∈ W2[0, 1], such
that

123



1062 J Math Chem (2010) 47:1054–1067

un(x)
‖·‖W2−→ u(x), as n → ∞

(ii) Second, we will prove u(x) is the solution of (2.13).
By Lemma 2.2 and (i) of Theorem 3.2, we know un(x) converge uniformly to u(x).

It follows that, on taking limits in (3.2),

u(x) =
∞∑

i=1

Ai ψ̄i .

Note that

(Lu)(x j ) =
∞∑

i=1

Ai 〈Lψ̄i (x), ϕ j (x)〉W1 =
∞∑

i=1

Ai 〈ψ̄i (x),L
∗ϕ j (x)〉W2

=
∞∑

i=1

Ai 〈ψ̄i (x), ψ j (x)〉W2 .

Therefore,

n∑

j=1

βnj (Lu)(x j ) =
∞∑

i=1

Ai

〈

ψ̄i (x),
n∑

j=1

βnjψ j (x)

〉

W2

=
∞∑

i=1

Ai 〈ψ̄i (x), ψ̄n(x)〉W2 = An .

If n = 1, then

(Lu)(x1) = G(x1, u0(x1), u0(s)). (3.7)

If n = 2, then

β21(Lu)(x1)+ β22(Lu)(x2) = β21G(x1, u0(x1), u0(s))

+β22G(x2, u1(x2), u1(s)). (3.8)

It is clear that

(Lu)(x2) = G(x2, u1(x2), u1(s)).

Furthermore, it is easy to see by induction that

(Lu)(x j ) = G(x j , u j−1(x j ), u j−1(s)). (3.9)

Since {xi }∞i=1 is dense on interval [0, 1], for any y ∈ [0, 1], there exists subsequence
{xn j }, such that
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xn j → y, as j → ∞.

Hence, let j → ∞ in (3.9), by the convergence of un(x) and Lemma 2.3, we have

(Lu)(y) = G(y, u(y), u(s)), (3.10)

that is, u(x) is the solution of (2.13) and

u(x) =
∞∑

i=1

Ai ψ̄i , (3.11)

where Ai are given by (3.3). �	
Theorem 3.3 If ‖un − u‖W2→0, xn → x, (n → ∞) and G(x, y, z) is continuous
with respect to x, y, z for x ∈ [0, 1], y, z ∈ (−∞,+∞) , then

G(xn, un−1(xn), un−1(s)) → G(x, u(x), u(s)) as n → ∞.

Proof Since ‖un −u‖W2→0, (n → ∞), by Lemma 2.2, we know un(x) is convergent
uniformly to u(x). �	

From Lemma 2.2, we have the following the corollary.

Corollary 3.1 Assume that the conditions of Theorem 3.2 hold, then un(x) in 3.2
satisfies ‖un − u‖C1[0,1] → 0, n → ∞, where u(x) is the solution of (2.13).

4 Numerical experiments

Mathematical modeling of real-life, physics and engineering problems usually results
in functional equations, e.g. partial differential equations, integral and integro-differ-
ential equations, stochastic equations and others. Many mathematical formulation of
physical phenomena contain integro-differential equations, these equations arise in
fluid dynamics, biological models and chemical kinetics. Integro-differential equa-
tions are usually difficult to solve analytically so it is required to obtain an efficient
approximate solution. In order to test the utility of the proposed method, we have solved
the following four problems. All computations are performed by the Mathematica 5.0
software package.

Problem 1 Consider the following problem

{
u′(x)− u2(x)+ ∫ 1

0 u(s)ds = f (x), 0 ≤ x ≤ 1,
u(0) = ∫ 1

0 u(x)dx .

where f (x) = 18(−3 + e)+ 9ex x − (9 + 9ex (−1 + x)+ 18(−3 + e)x)2. The exact
solution is u(x) = 9(x − 1)ex + 9(2e − 6)x + 9. Numerical results are displayed in
Table 1 and Fig. 1. The root-mean-square errors for the first derivative is 5.52461E-3.
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Table 1 The numerical results for Problem 1

Node True solution u(x) Approximate solution u100(x) Absolute error Relative error

0.1 −0.4589770 −0.4590070 3.01330E-5 6.56525E-5

0.2 −0.8082850 −0.8083340 4.90581E-5 6.06940E-5

0.3 −1.0253900 −1.0254400 5.56755E-5 5.42970E-5

0.4 −1.0842200 −1.0842800 5.16563E-5 4.76436E-5

0.5 −0.9547090 −0.9547490 4.00630E-5 4.19635E-5

0.6 −0.6021840 −0.6022070 2.32934E-5 3.86815E-5

0.7 0.0132187 0.0132175 1.18604E-6 8.97239E-5

0.8 0.9372850 0.9373160 3.17482E-5 3.38725E-5

0.9 2.2225200 2.2226200 9.85777E-5 4.43539E-5

1 3.9290700 3.9292900 2.13947E-4 5.44523E-5

0.2 0.4 0.6 0.8 1

-1

1

2

3

4

0.2 0.4 0.6 0.8 1

0.00002

0.00004

0.00006

0.00008

0.0001

Fig. 1 The superimposed image of u(x) with u100(x) and the |u(x)− u100(x)| for Problem 1

Problem 2 Consider the following problem

{
u′(x)+ u(x)

1+∫ 1
0 u(s)ds

= −3−4x
26 , 0 < x < 1,

u(0)− 1
3 u(1) = ∫ 1

0 u(x)dx,

The exact solution is u(x) = 1 + x
4 . Numerical results are displayed in Table 2 and

Fig. 2. The root-mean-square errors for the first derivative is 5.95426E-5.

Problem 3 Consider the linear boundary value problem for the integro-differential
equation which arises in chemical kinetics (see Ref. [15])

⎧
⎨

⎩

y(4)(x) = x(1 + ex )+ 3ex + y(x)− ∫ x
0 y(t)dt, 0 < x < 1,

y(0) = 1, y′(0) = 1,
y(1) = 1 + e, y′(1) = 2e.

The exact solution is y(x) = 1 + xex . Numerical results are displayed in Table 3 and
Fig. 3. The root-mean-square (RMS) errors for the derivatives are showed in Table 4.
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Table 2 The numerical results for Problem 2

Node True solution u(x) Approximate solution u100(x) Absolute error Relative error

0.1 2.05 2.04947 5.25709E-4 2.56443E-4

0.2 2.10 2.09946 5.39337E-4 2.56827E-4

0.3 2.15 2.14945 5.52917E-4 2.57170E-4

0.4 2.20 2.19943 5.66347E-4 2.57431E-4

0.5 2.25 2.24942 5.79521E-4 2.57565E-4

0.6 2.30 2.29941 5.92329E-4 2.57530E-4

0.7 2.35 2.34940 6.04659E-4 2.57302E-4

0.8 2.40 2.39938 6.16394E-4 2.56831E-4

0.9 2.45 2.44937 6.27415E-4 2.56088E-4

1.0 2.50 2.49936 6.37599E-4 2.55040E-4

0.2 0.4 0.6 0.8 1

2.1

2.2

2.3

2.4

2.5

0.2 0.4 0.6 0.8 1

0.00052

0.00054

0.00056

0.00058

0.00062

0.00064

Fig. 2 The superimposed image of u(x) with u100(x) and the |u(x)− u100(x)| for Problem 2

Table 3 The numerical results for Problem 3

Node True solution y(x) Approximate solution y100(x) Absolute error Relative error

0.1 1.11052 1.11052 2.34417E-8 2.11088E-8

0.2 1.24428 1.24428 7.67790E-8 6.17055E-8

0.3 1.40496 1.40496 1.37083E-7 9.75710E-8

0.4 1.59673 1.59673 1.85564E-7 1.16215E-7

0.5 1.82436 1.82436 2.08645E-7 1.14366E-7

0.6 2.09327 2.09327 1.99202E-7 9.51631E-8

0.7 2.40963 2.40963 1.57945E-7 6.55477E-8

0.8 2.78043 2.78043 9.49140E-8 3.41364E-8

0.9 3.21364 3.21364 3.10742E-8 9.66947E-9

1.0 3.71828 3.71828 0 0

Problem 4 Consider the nonlinear boundary value problem for the integro-differen-
tial equation which arises in chemical kinetics (see Ref. [15])

⎧
⎨

⎩

y(4)(x) = 1 + ∫ x
0 e−t y2(t)dt, 0 < x < 1,

y(0) = 1, y′(0) = 1,
y(1) = e, y′(1) = e.
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Fig. 3 The superimposed image of y(x) with y100(x) and the |y(x)− y100(x)| for Problem 3

Table 4 The RMS errors for the partial derivatives for example 3

√
∑10

i=1[y′(0.1i,0.1i)−y′
100(0.1i,0.1i)]2

10 4.62606E-7

√
∑10

i=1[y′′(0.1i,0.1i)−y′′
100(0.1i,0.1i)]2

10 3.42337E-6

√
∑10

i=1[y′′′(0.1i,0.1i)−y′′′
100(0.1i,0.1i)]2

10 2.66790E-5

√
∑10

i=1[y′′′′(0.1i,0.1i)−y′′′′
100(0.1i,0.1i)]2

10 9.27720E-5

Table 5 The numerical results for Problem 4

Node True solution y(x) Approximate solution y100(x) Absolute error Relative error

0.1 1.10517 1.10517 3.21511E-9 2.90916E-9

0.2 1.22140 1.22140 1.05891E-8 8.66959E-9

0.3 1.34986 1.34986 1.90069E-8 1.40807E-8

0.4 1.49182 1.49182 2.58585E-8 1.73335E-8

0.5 1.64872 1.64872 2.92105E-8 1.77171E-8

0.6 1.82212 1.82212 2.80067E-8 1.53704E-8

0.7 2.01375 2.01375 2.22897E-8 1.10687E-8

0.8 2.22554 2.22554 1.34379E-8 6.03803E-9

0.9 2.45960 2.45960 4.41125E-9 1.79348E-9

1.0 2.71828 2.71828 0 0

0.2 0.4 0.6 0.8 1

1.25

1.5
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Fig. 4 The superimposed image of y(x) with y100(x) and the |y(x)− y100(x)| for Problem 4

The exact solution is y(x)= ex . Numerical results are displayed in Table 5
and Fig. 4. The root-mean-square (RMS) errors for the derivatives are showed in
Table 6.
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Table 6 The RMS errors for the partial derivatives for example 4

√
∑10

i=1[y′(0.1i,0.1i)−y′
100(0.1i,0.1i)]2

10 6.48532E-8

√
∑10

i=1[y′′(0.1i,0.1i)−y′′
100(0.1i,0.1i)]2

10 4.84126E-7

√
∑10

i=1[y′′′(0.1i,0.1i)−y′′′
100(0.1i,0.1i)]2

10 3.78436E-6

√
∑10

i=1[y′′′′(0.1i,0.1i)−y′′′′
100(0.1i,0.1i)]2

10 1.31565E-5

5 Conclusions

In summary, we use an iterative method to find the approximate solution of integro-
differential equation with an integral boundary condition in the reproducing kernel
space. Using the method, a sequence which is proved to converge to the exact solution
uniformly is obtained. Numerical results are verified that the method employed in the
paper is valid. It is worthy to note that this method can be used as a very accurate
algorithm for solving linear and nonlinear integro-differential equations with integral
boundary conditions arising in chemical kinetics, physics and other field of applied
mathematics.
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